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Solution of the boundary value problem for the integrable
discrete SRS system on the semi-lirfe
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Physique MatBmatique et Taoriqgue, CNRS-UMR5825, 34095 Montpellier Cedex 05, France

Received 9 October 1998

Abstract. The complete solution of the initial-boundary value problem for the integrable discrete
version of the stimulated Raman scattering system on the semi-line is constructed by means of the
inverse spectral transform. The spectral data obey a Riccati time evolution equation which allows
for soliton generation out of a medium initially at rest. Itis also proved that the construction of the
solution at any finite distance actually results in solving an algebraic system.

1. Introduction

Generalities

The method of the inverse spectral transform (IST) was originally developed for partial
differential equations in continuous variables associated with an initial value problem. These
are, for instance, the Korteveg de Vries equation [1], the nonlinea®8ittger equation [2],

the sine—Gordon equation [3, 4], etc. Very soon after that the theory was also constructed for
discrete nonlinear evolutions (continuous time) such as the Toda lattice and the Ablowitz—Ladik
equation [5]. For a review see, for instance, [6].

Soon after the discovery of the integrability of all these physically interesting nonlinear
evolution equations, another class of nonlinear problems were shown to share some of the
integrability properties. The first instance was the self-induced transparency (SIT) equations
of McCall and Hahn [7] for which the Lax pair has been found by Lamb [8] and which have
been solved completely by Ablowitt al [4]. The first essential property of such a system is
to have a dispersion relation which is a non-analytic functioh @he wavenumber), and this
can be settled in a very general formalism [9, 10], alsq2ot 1)-dimensional problems [11].

The second fundamental property of SIT is that its solution can be extended to an arbitrary
initial state of the medium, allowing then the solution of an initial/boundary value problem
[12], which is of interest for superfluorescence. This property has then been generalized to the
class of evolutions with singular dispersion relations related to the Zakharov—Shabat spectral
problem in [13].

Among this class, there is the stimulated Raman scattering (SRS) system, first shown to
possess a Lax pair by Chu and Scott [14], which describes the interaction of two laser beams,
the pump wave (frequenay;) and the Stokes wave (down-shifteddg) with a medium
reduced to a collection of oscillators of frequensy — ws. The boundary value problem
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for SRS which is integrable by IST is precisely the one which is physically relevant, namely
the data of the input laser field values. This has allowed, for instance, to fully interpret the
experiments of [15] of laser pulse propagation ingds and to understand the obseraanan
spike[16].

In the meantime, remarkable progress have been performed in the construction of the
spectral transform for boundary value problems, either for linear or integrable nonlinear
evolutions [17].

Recently, two important extensions of coupled wave equations have been obtained. First
the discrete integrable version of the SRS system have been constructed [18] on the basis of the
Ablowitz—Ladik spectral problem. This was the first instance of an integrable discrete system
having a singular (nonanalytic) dispersion relation. Second the (continuous) SRS system have
been solved on the semi-line, that is with input laser fields boundary valuessr0 [19].

The interesting result there is that the time evolution of the spectral transform (the reflection
coefficient) allows for pole motion which implies that solitons can be created out of a medium
initially at rest.

Our purpose here is to prove that the boundary value problem on the semislirgefor
the discrete SRS system is solvable and to study the resulting consequences on the evolution
of the spectrum.

Results

We solve the following discrete three-wag#;, A,, g) system:
A1(0,n,1) — A1, n—1,1) =" (n, 1) A28, n, 1)

Az(0,n,t) — A20,n—1,1) = —e_ingé(n, t)A1(0,n,t) (1.1)

+

1 )
qnt)=—-— | (ArxAx)e " dg.
27 J_,

The parametef varies in -, +7], n is an integer and the time. The interaction term here
above is

g A1(n — 1) Ap(n) + g Ax(n) Az(n — 1)
|A1(n) |2 + | A2(n) |2
whereg = g(6, 1) is an arbitrary function irL.?([—, +]) which can also be time dependent.
One of the main results is the proof that the system (1.1) with datal-boundary value
problen) on the semiline: > 0
q(n,0) 1(0,1) = A1(0,0,1) (0,1) = A2(9,0,1) (1.3)
is solvable. To be more specific, the method gives the explicit output field valuessaso
|7|? 1 p 7|2 51
A =——7\ 11— — 12— A = IL1—+ - 14
1(00) l+|,0|2< 17 21) 2(00) T+pp\ 7 Tz (1.4)

in terms of the scattering data(9, ¢t) (reflection coefficient) and (0, ) (transmission
coefficient).
We shall demonstrate thatis constructed by solving the Riccati evolution

(A1% Az) = 1.2)

o1 = viz+ p(vi1 — v22) — P2z (1.5)

andz by solving then the linear evolution

T
?f = W22 — V22 — PV21 (1.6)

where they;; andu;; are explicitly given from the input data in formulae (4.4) and (4.5).
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In conclusion the output fields values (1.4) can be computed through a sequence of linear
(or linearizable) operations which require only the input fields valyesd I, and the initial
spectral datunp(k, 0), spectral transform of the initial valug(n, 0). The case when the
medium s initially atrest, i.ez(n, 0) = 0, corresponds to taking(k, 0) = 0 and consequently
the solution is explicit, which shall be illustrated on an example. In the case of an initial datum
g(n, 0) given on a finite interval, as the initial spectral transfopiit, 0) can be explicitly
computed [20], the solution is explicit too.

Lastly, we shall demonstrate that the field valdgs0, L, t) at any finite distance = L
can be obtained from the scattering coefficients as the solution of an algebraic system of order
L. This result is of great interest for numerical implementation of the IST method for the SRS
equations, which will be the subject of forthcoming work.

Continuous limit

The very reason why the system (1.1) is calligstrete SR8es in the fact that its continuous
limit is the model equation for stimulated Raman scattering. Indeed, under the new variables

_ qn, 1)

X = ne 2\ = g aj(A,x,t)=A;0,n,t) O(x,1) a.7)
the first two equations of (1.1) become in the limit> O

dca; = Qae?™* dcar = —Qa e 2, (1.8)
A direct consequence of the above system is

0y (la1? +]az]?) = 0 (1.9)

and consequently this quantity can be calculated4n 0, i.e.

A2 + A2 — laa? + |az|® = |L? + |22,
Now the time evolution ofy becomes

1 oo § + g =~ A—2iAx

0; = pn /;oo da |11|2+ |12|2a1a2e (1.10)

which finally reduces to SRS for
g+g

[11]2 + | I
wheregg is the Raman scattering coupling constant.

The system (1.8) and (1.10) (with the above choice) is actually a version of the well
known SRS system as in [14], where the group velocity dispersion is not neglected [19]. The
parameten. then has the physical meaning of the spectral extension of the wavepackets of
envelopes:; (pump) andu, (Stokes).

Then, the most natural application of the method developed here is the integrable
discretization of the SRS equations, together with a simple algorithm for computing the
nonlinear Fourier transform.

= 7go (1.11)

2. Construction of the integrable evolution

The Lax pair

Let us consider the following pair of operators:
Yk,n+1)=Um) Ak) ¥k, n) A2(k) (2.1)
Vi(k,n) = V(k,n) Yk, n) (2.2)



930 M Boiti et al

where

_ -1 _( 0 am (12 0
v =i-owsdit om=( 00 0 ) aw=( 1Y)

with z2 = k. The compatibility between these two operators can be written as
Ui(n) = V(k,n+1) Um) — Un) Alk) V(k, n) A~1(k) (2.3)
or equivalently

0:n+1)=U ) Vk,n+1) — Ak) V(k,n) A~1(k) UL (n). (2.4)

Particular choice forV

The general evolution (2.4) acquires interest wherkttependence is eliminated, which can
be performed through the choice of the matvik, n, ¢) in terms ofU (k, n, t). For instance
a polynomial dependence @nwould lead to the Ablowitz—Ladik hierarchy. Here we choose

_ 1 4 1 0
Vik,n) = o 7% z _kA(C,n)G(C)A (C,n)< 0 k/¢ ) (2.5)
where( is the unit circle oriented anticlockwisé;, is an arbitrary diagonal matrix
ga1¢) 0
G() = 2.6
©o=(" ) 2.6)

andA(¢, n) satisfies the spectral equation (2.1), i.e.
A n+D) =Um) AQ) A, n) ATHQ). (2.7)

The general evolution (2.4) now becomes

1 de
Qt(”"‘l)—%fémM(k,{,”) (2.8)
with

1 0
Mk, ¢, n) = U‘l(n)A(;“,n+1)G(§)A_l(§»”+l)< 0 k/¢ )

1 >A1(k) U~tn). (2.9

—A(k)A(c,n)G@)Al(c,n)( 0 K/t

Using the identities

1 0\, ., 20 2(k) (1 0 )
A (k)= —=A —Ak) = A
(0 k/c) ©O="o" O o ={o i )@

together with the spectral equation (2.7), we finally obtain after some algebraic manipulation
that the quantity (k, ¢, n)/(k — ¢) is actuallyk independent, and the evolution reads

1 d
Qn+D =—o— 55 —g[%, A AL, GO AN AN n+ D] (2.10)
7Tl I 2{
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Discrete SRS

To recover now from the above evolution the SRS system (1.1), we assume the reduction

r = —q. In that case, one can show that the matrigaés, n) and G (¢) have the following
structures:
A1 (A ) < g O )
A= Z G = . 2.11
< ("Az  —Az 0 —g (2.11)

Equation (2.7) then results in
Al({: n, t) - Al({v l’l—l, t) = é‘nQ(n? I)AZ(gt n, t)
Az(é" n, t) - Az(é" n_17 t) = _Cinq(nv t)Al(Cv n, t)

which is nothing but the first two equation of (1.1) for= €?. Next, it is only a matter of
algebraic computation to reduce, with the structure (2.11), the evolution equation (2.10) to the
formin (1.1).

(2.12)

Energy non-conservation

Note that in contrast to what occurs in the continuous case, the quantity

—det(A} = |A1* + | Az (2.13)
is not a constant as indeed from (2.12) we deduce

As(n + DI*+|Az(n + D) = 'Ai(ﬂ':(l |+Ai)(|nz)|2 @19
which shows that the tot&nergy flux densitis not conserved along the line, or that the light
beams leave some energy on each visited site. Aftteps,

n+l
1
[A1(n + D2+ |A2(n + D12 = (ILP+ LA | | ————- 2.15
1 2 ( 1 2 )11:!1+|61(1)|2 ( )

Note on the dispersion relation

Inthe IST method, the principal spectral problem (2.1) is used to define a special solution, say
@(k, n), by selecting particular boundary valuesiin= 0 (orn — o0). Then there exists a
matrix C (k, n) satisfying the equation

Ck,n+1) = Ak) C(k,n) A 1(k) (2.16)
such that
@k, n) = vk, n)Ck,n). (2.17)

Consequently the solutiop(k, n) satisfies a modified version of the auxiliary spectral
problem (2.2), namely

o (k,n) = V(k,n)ptk,n)+ ek, n) 2k, n) (2.18)
where

Q(k,n) = C Yk, n) C;(k, n). (2.19)
The compatibility condition is not modified with that operator, as indeed we have

Qk,n+1) = Ak) Q(k, n) A"L(k) (2.20)

and the matrix2 (k, n) is called thedispersion relation
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3. The spectral problem on the semi-line

Jost solutions

Let us consider the Ablowitz—Ladik spectral problem (2.1)

ok, n+1) — A p(k, n) A™t = Q(n+1) p(k, n+1) n<0 = Qn =0 (3.1)
wherek is the spectral parameter which belongs to the dorfaia C — {0, co}. The solution
of (3.1) possesses the property

detip(k, n)} = det{p(k, n+D}[1 — r(n+1)g(n+1)]. (3.2)
The solution of this spectral problem goes through the construction of some well chosen

solutions (the Jost solutions) out of some particular asymptotic behaviours. These solutions
are denoted by* and are defined by the following discrete integral equati@ns 0):

> qG) g3k, )
i=1

(5061
@1k, n) > K@) o1k, i)

i=1
. — kK "q (i) o3k, i)
( @1k, n) ) _ <0> + i;l G (3.4)
+ —\1 1 .
Pao(k, n) > r(@) eipk. i)

i=1

> a@) enk, i)
i=1

( 901:1(/6, n) ) _ <é) N [ (3.5)
eallm) = R ek i)
i=n+1
kK "q @) @k, i
< @1o(k, n) ) _ <0> . ; q (i) pyo(k, 1) -
CUREE > r ) etk i)
i=1
together with
n<0 = ¢fn) =AeEO)A™". (3.7)

Analytical properties

The column vectorg; (n) is a polynomial of order — 1 ink andg, (n) a polynomial of order
n —1in 1/k. Hencey; (n) can be analytically defined inside the unit circle gidoutside.
We prove in appendix A that the vectpi is meromorphic inside the unit circle with a finite
numberN* of simple poles, (andy; outside withN ~ polesk;,).
These solutions obey the Riemann—Hilbert relations on the unit circle
g1 —¢1 =—¢"p 9
Lo T (3.8)

O — @ =8 TP @q

where thereflection coefficientare

pr==d e ==Y DR ). (3.9)
i=1 i=1



Integrable discrete SRS system on the semi-line 933

Boundary behaviours and spectral coefficients

By direct observation we have

.+ 1 p* - 1 0
n=0¢"={4 =\ p 1

- . (3.10)
—00. ¢t — t 0 - (" .
" - @ ept Tt ¢ o = )
These bounds define also the transmission coefficiehtss
=14 ren@ ) T =1+) q)en.i) (3.12)
i=1 i=1

and the auxiliary spectral dagtt and ¢+ which are discussed in appendix B. Using (3.2)
recursively fronn = 0 to oo we obtain theunitarity relation

1-p'p ="t [[[1-r()q®)]. (3.12)
i=1

Reduction

If Q(n) satisfies the reductiofp(n) = —r(n) one can verify directly from the discrete integral
equations defining in (3.3)—(3.6) that

ozmag = ¢~ (k,n). (3.13)
Then from the definitions (3.9), (3.11) it follows that figi = 1

PO ==p" ()  T@OQ=1©) (3.14)
and to simplify the formulae from now on we shall be using

p&)=p"() () =77(). (3.15)
The unitarity relation (3.12) can be rewritten as

1+|pl* = |t*F (3.16)
where

F=T]@+Ig@P) (3.17)

i=1
4. The solution of discrete SRS

Time evolution of the spectral data

The tool to solve the boundary value problem (1.3) for the discrete SRS system (1.1) is
completed now by calculating the time evolution of the spectral coefficigigts) andz (¢, ).
Indeed, once these evolutions found, the output field values (1.4), are explicitly calculable.
The question of the evaluation of thetentialg (n, t) goes through the solution of the inverse
problem which will be discussed later.

The evolution of the reflection coefficient(z, ¢) is obtained from the auxiliary Lax
operator (2.2), or more precisely from the version (2.18) adapted to the Jost soltipns
by just taking its value im = 0 and its limit value a2 — oo. This calculation, while
technical, presents no particular difficulty and we leave it to appendix C. Let us just remark
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that the procedure gives the value of the dispersion reldtidrand the time evolution of all
spectral datad™, t* p* andz*), and that it furnishes more equations than necessary. Hence
we shall have to verify consistency, namely that some of the equations are redundant.

The result of the process detailed in appendix C is the following time evolution of the
reflection coefficient:

pr = Vi5(0) + p[Vi1(0) — V55(0)] — p2V51(0) 4.1)
and of the transmission coefficient
T, = V;5(00)T — [Vo(0) + pV51(0) ] (4.2)

whereV;; (0) (respectivelyV;; (co)) denotes théj-component of the matrik (k, n, ¢) defined
in (2.5) taken im = 0 (respectively im — o0).
These evolutions can be written in a more compact form as

pr = vi2+ p(v11 — v22) — P71 (4.3)

where the;; are given from the input data as the components of the matrix (we fote/e

1 ?g d¢ 1 ( glhl? = glLP?  (g+@)hbk/¢ )
271 Je ¢ = A= 0k [LP+ P\ (g+2) Ll  (g1l* - gIL*)k/¢

where( is the unit circle. For the transmission coefficient we have the linear evolution (1.6)
for

(4.4)

1 d kgllp+ L% =gl — phl?
f 4 gllp + I|° — gl — pla| (4.5)

K2 i et — =0kt (1+1pPR) (L2 + 1)

It is worth noting that théoundary valuelatal; and/; of (1.3) completely determine the
coefficients of the above evolutions, while timitial datum ofg (n, 0) determines the initial
valuesp (k, 0) andz (k, 0) through the solution of the direct spectral problem (as usual in the
IST method). The interesting aspect of our system is that the physically relevant case is that
of two waves entering a medium initially at rest, that isd@én, 0) = 0 corresponding to

p(k,0) =0 t(k,0) = 1. (4.6)

We note also that the evolutions (4.1) which furnishes the solution is constituted of an
inhomogeneous terivi,(0) responsible for growth of the medium excitatigre linear factor
ensuring Raman amplification and a nonlinear partohallowing for pole motion in the
complex plane.

Inverse problem

The IST method allows also to solve for the value of the medium excitatioyr) for all » and
any given timer. This is obtained by solving thaverse problemnamely the reconstruction
of the Jost solutions, and of tipetentialg, from the data op (k, t) andz (k, ¢). This is done
as follows.
The potentials are obtained by inserting into (2.1) the asymptotic expansions at large
and at smalk of, respectivelyp, andy;. The resultis

qn+1) = g1 (n) rn+1) = —g51 () (4.7)

where ;3" (n) is the coefficient ofk in the Taylor expansion fot — 0 of ¢;,(k,n) and
9,1 (n) the coefficient of 1k in the Laurent expansion far— oo of ¢5;(k, n).
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Note that from (3.5) and (3.4) we have
. _ 1
k||—>moo o1 (ko) = (0)
o 0
llclino(pz(k’ n) = <1>

935

(4.8)

(4.9)

Taking into account these asymptotic behaviours and their analytical properties we deduce
that the Jost solutions; andy; can be reconstructed by solving the following Cauchy—Green

integral equations:
< ¢k, n) )z ( ) 7{ AN £"p~(8) ( P12(¢, 1) )
@a1(k, n) 2 ¢ = @A +0k\ @yn(¢,n)
-30R ( P2l )
(022(1{} 1)
( 1ok, n) ) — < > f r—= P {"pt(©) k( P11(¢,n) >
@30k, ) 1) " 2xi (= A=0k¢\ ¢3(,n)

—Z k 1 ( ¢11(k+ n) )
k+ k+

¢21(k+, n)

By using (C.2) and the Riemann—Hilbert relations we deduce that
< 11k, n) )z ( ) 7{ 8P < ¢12(0, 1) )
<P§1(k7 n) 27” ¢ —A-0k (P2_2(§, n)
_Z(k )n < 12 J )
wzz(kj ,n)
( @1o(k, n) )= <0>+i7£d§ 7" () E( P11(¢,n) >

o ko1 p11(k7, n) )
— k: Re —_—
X,:( J) i 3 }k}r ki — ( @31 (k7, n)

Consistency of the evolution on the semi-line

(4.10)

(4.11)

(4.12)

(4.13)

The consistency of the method results in verifying that the reconstructed eigenfunction does
obey the boundary condition (3.7). This is actually a consequence of the analytical properties
of p atallz, which is a consequence of (4.1) where the coefficients are analytic functions inside

the unit disc.

Indeed forp* (k) meromorphic inside the unit disc with a zerokat= 0 and forp~ (k)

meromorphic outside the unit disc with a zerdat oo we have that
+ 1
@1k, n) = 0 for n <0

oy (k.n) = (2) for n<o.

(4.14)

(4.15)
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Inserting these values into (4.10) and (4.11) we obtain
. k™" p*(k
vitem = (0

1
o (k,n) = ( Ko (k) ) for n<O.

Then thanks to (4.7) and recalling that(k) has a zero at = 0 andp~ (k) a zero ak = oo
we get that the reconstructed potentisln) = 0 forn < 0.

Algebraic solution of the inverse problem

The inverse problem can be solved without using the Cauchy—Green integral equations but
just using directly the Riemann—Hilbert relations (3.8), together with the information that the
column vectolp; (n) is a polynomial of order — 1 in k andg, (n) a polynomial of orden — 1
in 1/ k, that the asymptotic behaviours@f(n) andy, (n) atk = 0 and ak = oo, respectively,
are given by (4.9) and (4.8) and that(k) andp~ (k) are meromorphic, respectively, inside
and outside the unit disc with a zerokat= 0 and atk = co.

Using this information the spectral data are expressed as

Pty = "s* )k (4.16)
i=1

pk)y=> s (i) k™ (4.17)
i=1

and we seek the solution of the inverse problem under the form

n—1

oy(k.n) =Y "d* (i, n)k (4.18)
i=0
n—1 )

9y (kon) = "d (i.n)k™". (4.19)
i=0

Solvingthe inverse problem is then understood as finding the unknowns 2-veét@rs:) in
terms of the (scalar) dat& (i).

The first and second equation of (3.8) can be extended analytically, respectively, outside
and inside the unit disc. We insert (4.18), (4.19), (4.16) and (4.17) and imposk tad
k~' terms cancel out. Thenwe get = 0,1, ...,n — 1) the following algebraic system of
equations for the unknowns® (i, n)

n—1 0 1

anid (o) = ( )s<n —m) —5mo( ) (4.20)
£ 1 0
n—1 1 . 0

bmjd_(j’ n) = (O)s (n —m) — 8}710(1) (421)
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where the coefficients are expressed in terms of the data as

n—j—1
amj= Y stn—j—iDs (n—m—i) for j<m-1 (4.22)
i=0
n—m—1
G =y sTn—m—i)s"(n—m—i)—1 (4.23)
i=0
n—m—1
amj = S+(n—j—i)s_(n—m—i) for ] >m+1 (424)
i=0
and
n—j—1
buj= Y. s (—j—i)s*mn—m—i)  for j<m-—1 (4.25)
i=0
n—j—1
bum =Y s (n—j—=Ds'(n—m—i)-1 (4.26)
i=0
n—m—1
bpj = sT(n—j—i)T(n—m—i) for j>m+1 (4.27)

By factorization of the coefficients of/k andk in (3.8), we obtain the expressions of
o7 P (n) andg;™® (n) which from (4.7) lead to the potentials

n—1

rn+) == dy(i.n)s (n—i+1) (4.28)
i=0
n—1

g+ =—=> "diGns" (n—i+1 (4.29)

i=0

where thedf’s denote the two components of the veaiot.
In the case of the reduction= —g we have

di(i,n) =d, (i,n) (4.30)
d3(i,n) = —dy (i, n) (4.31)
st = —=s~(@0). (4.32)

In this case the matrices of the coefficients of the two systems of equations in the unknowns
d*(j,n) andd*(j, n) are adjoints with diagonal elemen{s0.

5. A significant example

Let us consider the case
Lk, t) = a€?® Ii(k, 1) (5.1)

wherel;(k, t) is an arbitrary function angg € R anda € C are arbitrary constants. This
choice corresponds to a Stokes envelope ifdpt, t) which is a portion of the pump input
I, (k, t) and with a polarization direction rotating around thaf gk, ¢) at angular velocityp.
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From (4.1) and (C.12), in the reduced cgse- —r, we obtain the following evolution
equation for the reflection coefficient:

o + €% ap? + (B +ig)p +eky =0 (5.2)
where

“H=T +2 Talz) % 7£ ¢ i§<§R£C3)k) (5:3)

Bk = —(11: L‘;’j)% $ %(1 kO i —ige  (5.4)

y(k)=—ﬁ%y§@fif—’i%;k)c (55)

o = _Z_;fé dg s;:(;) (5.6)

andggr(¢) andg,(¢) are the real and imaginary part of the coupling function, respectively. It
is easy to show that changing(¢) is equivalent to change the phagén the equation (5.1)
relating the two initial datd, andI,. Therefore, without loss of generality, we can choose
g1(¢) =0 (and thenpg = 0), while gz (¢) is left arbitrary.

The Riccati equation (5.2) can be solved explicitly giving

T'po — (Bpo + 2ky) tanhl'z/2

_ it
P =e I + (2apo + B) tanhl'z/2 ®.7)
where
po(k) = p(k, 0) (5.8)
(k) = vB(k)2 — dka(k) y (k). (5.9)

Sincep is invariant for the exchande — —T, it has no cut related to the square root necessary
to obtain". Consequently, thanks also to the analytical properties, ¢ andy, p has the
same analytical properties p§ (that is meromorphic inside the unit disc with a zera at 0)

with some possible additional poles due to the zeros of the denominator.

For the evolution equation df we get from (C.18)

Fi_ 1 [dien lpI*(1— lal?) +ape™™ +ape’ (5.10)
FoomJe ¢ (L+1al?)(1+101?)

In particular, if the initial valueg (n, 0) are different from zero only on a finite interval
the spectral initial datag can be explicitly computed via a finite step of algebraic operation
(see [20]) and, then, once performed the integrals (5.3)—(5.5), one finds from (5.7) the spectral
datap (k, t) at timer. Finally, the initial value problem is solved by integrating (5.10) and by
following the algebraic procedure described in section 4.

Appendix A. Analytical properties

The discrete integral equation (3.3) definipgcan be rewritten as

n—1 n—1
ik, m)(L—r(m)g(n) =1 +q(m) Y K" 'r@) gfrk, i) + Y q(i) p31(k, i)
i=1 i=1

n—1

31k, n) = r(m)iy(k, n) + > K"'r (i) o1k, i)
i=1



Integrable discrete SRS system on the semi-line 939

which allows to prove by induction thaf (n) is a polynomial of order — 1 ink. Analogously,
using (3.6) one can show thaf (n) is a polynomial of order — 1 in 1/k.
The integral equation fap;, rewritten as

( <p£2(k,n) )=< +o )_ i ( k"‘”fz(i)fgz(/.c,i) ) A1)
Pao(k, n) (k) i=n+1 r(i) 1ok, i)
shows that the functioft; = ¢; /v satisfies the discrete Volterra-like integral equation
( wl}(k,n) ) _ (0) ~ i ( ki‘”?(i)+w§2(lf,i) ) A2)
Voo(k, n) 1 i=n+1 (i) Yook, i)
Hencey; is analytic inside the unit disc. Then, writing as
00 -1
(k) = [1 - Zr(i) Yio(k, i)] (A3)
i=1

we deduce that*(k) is meromorphic inside the unit disc with poles the zeros of 1
> g (i) Y3,(k, i). Consequently; is meromorphic inside the unit disc with polescat &
that we assume to be simple.

Note that from the first line of (A.1) and the definition of in (3.9) we have

p*(k) = K" @Y,k n) = Y k' q(i) p3p(k, i) (A.4)
i=1

Thereforep™ (k), in contrast with the full line case, can be continued analytically inside the
unit disc where it has the same analytical propertieg;a@k). Note also thap* (k) has a zero
atk = 0.

From (A.4) and the second line of (3.4) after multiplicationkoy k;f we get in the limit
k— kT

J

(k})" Respiytk.n) = C + 3 (kj)' (i) Resyiy(k. i)
j i=1 J
Respi (k, n) = ) Resp,(k,
k;swzz( n) ;ru) k7s<p12( n)
with

Ci = R/’(f;Sp*(k). (A.5)
Comparing with (3.3) we have
Resy; (k, n) = (k}) " Ciyi (k] n). (A.6)

Analogously we can show thaf is meromorphic outside the unit disc with simple poles at
k =k; , thatp~ (k) has the same analytical properties, etc.
The analytical properties @f can be summarized by writing

8“’(8’;_’ Y _ otk n) Rk, ) (A7)
where
B 0 ot (k)8* (k, D)k
Rk, n) = ( — o= (k)8~ (k, Dk" )
N* + _ pt\pn
—271i< N 0 ~ L Cj3(k - k) ) (A.8)
YN8k — kK" 0
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The distributionss* (k, 1) have support on the unit circtgin the complexk-plane and are
defined by the following formula:

// dic A dk 85 (k, 1) £ (k) = ?gdg F(AF0)0). (A.9)
C
The distributions (k — k") have support on the poikt= k; and are defined by
// di Adk8(k — k) f (k) = f (k7). (A.10)

In the reduced casg(n) = —r(n) taking into account the reduction property fof in (3.14)
and the definitions (A.5), we have

1 ct C~
K= — L =) A.11
Tk 3 (kj‘ (A1)

Appendix B. Auxiliary spectral data

The auxiliary spectral data used in the boundary behaviours (3.10) are defined as

=Y T ehc. ) pT =) ¢ ql) et i) (8.1)
i=1 i=1
=14 gD ki) =1+ r() e . (B.2)
i=1 i=1

By computingp® + pT and using the R—H relations (3.8) we readily obtain
pr=—p1" p-=—p't" (B.3)
and similarly fromz* — t¥ we obtain

- +

t T T

= = — B.4
1—p*p~ ’ 1-p*p~ (B4)
which, in turn, imply
" p- Tt A ptTT
__ N B.5
1—pp~ P 1-p*p~ (85

Finally, formulae (B.4) and (B.5) in the reduced case —¢, can be rewritten by means
of (3.12) and (3.17) as

1 1

‘E+ = — f_ = — (86)
TF TF
N o P

= — =——. B.7

iF P F (B.7)

Appendix C. Evolution of the spectral data

For deriving the evolution equation for the spectral data we use the evolution equatigh for
in (2.18) that we write successively in= 0 andn = oco.
Let us recall first that

. 1 de (kY 1 _
nlnj?ooﬁ cé’Tk<E> q’(f)—:FEq)(k) k| =1 (C.1)

d¢ L d¢ B
ﬁmﬂé) —ilﬂf(k>+Pfé§ka(§) k| = 1. (C.2)
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We rewrite (2.18) as
AT (k) @] (k,n) A" (k) = AT"(k) V' (k, n) A" (k) A7" (k) " (k, n) A" (k)

+AT" (k) " (k, n) A" (k) @ (k) (C.3)
where we introduce, for convenience, the maisik) = A" (k) Q(k) A" (k), and compute

the behaviour as — oo of the matrixA " (k) V*(k, n) A" (k) which, using (C.1) and (C.2),
results in
lim {A™"(k) V*(k,n) A" (k)} = < Uil(k’ %) . 0 ) (C.4)
n—00 v5q(k, 00)  v3,(k, 00)
with
oty (k, 00) = iyg d¢ glh — Lpl? — gllp + I)?
2ni Jet = (A =0k  (1+p2)(1L/?+|L2/?)
wh,(k, ) :_i_¢ d¢ gl — Lpl* — glhp + LI k
27i Jo ¢t — =0k (L+[pP)(ILP+|LP) ¢
uhy(k, 00) = (8_‘"37)7(11 — p)(1p + I2)
T(1+(p?)(111]? +12/?)
Therefore in the limit: — oo from the element 12 of (C.3) we fingd;, = 0, and from
the other matrix elements

T, = V3,(00)T + wy,T (C.5)
7, = v7,(00)T + Wy, T (C.6)
pr = v31(00)T + (v35(00) + w11)p + Wy T (C.7)

Evaluating the same evolution equatiomat 0 we have

0= V1(0) + 1) + pwgy (C.8)
0= V2+1(O) + a)gl (C.9
0= V5(0) + 0}, + pV3(0) (C.10)
pr = Vi5(0) + pV11(0) + pw3y (C11)
where
1 de¢
VYk,0) = —
27 Jo (¢ — (1= 0k) (|12 + | 12]?)
L2 — 2|2 + I 1
><<g| 1l _z{IzI (gzg)_122><1 0 > (C.12)
g+l  glh*— gl 0 k/¢

We therefore obtain for the evolution equation (4.1paind
o < —V}1(0) + pV51(0) 0 )
—V3(0) —V3(0) — pV5,(0)
Inserting the value obtained fer into (C.5)—(C.7) we get evolution equation (4.2) together
with the following evolutions of the auxiliary spectral data:

(C.13)

7, = v3,(00)T — (V;3(0) — pV5,(0))7 (C.14)

P = 031(00)T + (v3,(00) — V{1(0) + pV51(0)) p — V1 (0)7. (C.15)
Then by using (B.6) we have

PRSI VY (C.16)

T F
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Inserting it into (4.2) we find

F,

Ft = —}1(00) — v3,(00) + V;1(0) + V,,(0) (C.17)
or otherwise

F, 1 (de  _|plP(1LP? —|BP) + Libp + Libp

Do e+ ( a Z ) (C.18)

Fo 27 Je (|11| + | 1] )(l+|p|)

On can verify consistency by checking that (C.15) is consequence of the other evolution
equations.
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