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Solution of the boundary value problem for the integrable
discrete SRS system on the semi-line∗

M Boiti†, J Leon and F Pempinelli†
Physique Math́ematique et Th́eorique, CNRS-UMR5825, 34095 Montpellier Cedex 05, France

Received 9 October 1998

Abstract. The complete solution of the initial-boundary value problem for the integrable discrete
version of the stimulated Raman scattering system on the semi-line is constructed by means of the
inverse spectral transform. The spectral data obey a Riccati time evolution equation which allows
for soliton generation out of a medium initially at rest. It is also proved that the construction of the
solution at any finite distance actually results in solving an algebraic system.

1. Introduction

Generalities

The method of the inverse spectral transform (IST) was originally developed for partial
differential equations in continuous variables associated with an initial value problem. These
are, for instance, the Korteveg de Vries equation [1], the nonlinear Schrödinger equation [2],
the sine–Gordon equation [3, 4], etc. Very soon after that the theory was also constructed for
discrete nonlinear evolutions (continuous time) such as the Toda lattice and the Ablowitz–Ladik
equation [5]. For a review see, for instance, [6].

Soon after the discovery of the integrability of all these physically interesting nonlinear
evolution equations, another class of nonlinear problems were shown to share some of the
integrability properties. The first instance was the self-induced transparency (SIT) equations
of McCall and Hahn [7] for which the Lax pair has been found by Lamb [8] and which have
been solved completely by Ablowitzet al [4]. The first essential property of such a system is
to have a dispersion relation which is a non-analytic function ofk (the wavenumber), and this
can be settled in a very general formalism [9, 10], also for(2 + 1)-dimensional problems [11].

The second fundamental property of SIT is that its solution can be extended to an arbitrary
initial state of the medium, allowing then the solution of an initial/boundary value problem
[12], which is of interest for superfluorescence. This property has then been generalized to the
class of evolutions with singular dispersion relations related to the Zakharov–Shabat spectral
problem in [13].

Among this class, there is the stimulated Raman scattering (SRS) system, first shown to
possess a Lax pair by Chu and Scott [14], which describes the interaction of two laser beams,
the pump wave (frequencyωL) and the Stokes wave (down-shifted toωS) with a medium
reduced to a collection of oscillators of frequencyωL − ωS . The boundary value problem
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for SRS which is integrable by IST is precisely the one which is physically relevant, namely
the data of the input laser field values. This has allowed, for instance, to fully interpret the
experiments of [15] of laser pulse propagation in H2 gas and to understand the observedRaman
spike[16].

In the meantime, remarkable progress have been performed in the construction of the
spectral transform for boundary value problems, either for linear or integrable nonlinear
evolutions [17].

Recently, two important extensions of coupled wave equations have been obtained. First
the discrete integrable version of the SRS system have been constructed [18] on the basis of the
Ablowitz–Ladik spectral problem. This was the first instance of an integrable discrete system
having a singular (nonanalytic) dispersion relation. Second the (continuous) SRS system have
been solved on the semi-line, that is with input laser fields boundary values inx = 0 [19].
The interesting result there is that the time evolution of the spectral transform (the reflection
coefficient) allows for pole motion which implies that solitons can be created out of a medium
initially at rest.

Our purpose here is to prove that the boundary value problem on the semi-linen > 0 for
the discrete SRS system is solvable and to study the resulting consequences on the evolution
of the spectrum.

Results

We solve the following discrete three-wave(A1, A2, q) system:

A1(θ, n, t)− A1(θ, n−1, t) = einθq(n, t) A2(θ, n, t)

A2(θ, n, t)− A2(θ, n−1, t) = −e−inθ q̄(n, t) A1(θ, n, t)

qt (n, t) = − 1

2π

∫ +π

−π
(A1 ∗ A2) e−inθ dθ.

(1.1)

The parameterθ varies in [−π,+π ], n is an integer andt the time. The interaction term here
above is

(A1 ∗ A2) = g A1(n− 1) Ā2(n) + ḡ A1(n) Ā2(n− 1)

|A1(n)|2 + |A2(n)|2 (1.2)

whereg = g(θ, t) is an arbitrary function inL2([−π,+π ])which can also be time dependent.
One of the main results is the proof that the system (1.1) with data (initial-boundary value

problem) on the semi linen > 0

q(n, 0) I1(θ, t) = A1(θ, 0, t) I2(θ, t) = A2(θ, 0, t) (1.3)

is solvable. To be more specific, the method gives the explicit output field values asn→∞

A1(∞) = |τ |2
1 + |ρ|2

(
I1

1

τ
− I2ρ

τ

)
A2(∞) = |τ |2

1 + |ρ|2
(
I1
ρ̄

τ̄
+ I2

1

τ̄

)
(1.4)

in terms of the scattering dataρ(θ, t) (reflection coefficient) andτ(θ, t) (transmission
coefficient).

We shall demonstrate thatρ is constructed by solving the Riccati evolution

ρt = ν12 + ρ(ν11− ν22)− ρ2ν21 (1.5)

andτ by solving then the linear evolution
τt

τ
= µ22− ν22− ρν21 (1.6)

where theνij andµij are explicitly given from the input data in formulae (4.4) and (4.5).
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In conclusion the output fields values (1.4) can be computed through a sequence of linear
(or linearizable) operations which require only the input fields valuesI1 andI2 and the initial
spectral datumρ(k, 0), spectral transform of the initial valueq(n, 0). The case when the
medium is initially at rest, i.e.q(n, 0) = 0, corresponds to takingρ(k, 0) = 0 and consequently
the solution is explicit, which shall be illustrated on an example. In the case of an initial datum
q(n, 0) given on a finite interval, as the initial spectral transformρ(k, 0) can be explicitly
computed [20], the solution is explicit too.

Lastly, we shall demonstrate that the field valuesAj(θ, L, t) at any finite distancen = L
can be obtained from the scattering coefficients as the solution of an algebraic system of order
L. This result is of great interest for numerical implementation of the IST method for the SRS
equations, which will be the subject of forthcoming work.

Continuous limit

The very reason why the system (1.1) is calleddiscrete SRSlies in the fact that its continuous
limit is the model equation for stimulated Raman scattering. Indeed, under the new variables

x = nε 2λ = θ

ε
aj (λ, x, t) = Aj(θ, n, t) Q(x, t) = q(n, t)

ε
(1.7)

the first two equations of (1.1) become in the limitε → 0

∂xa1 = Qa2e2iλx ∂xa2 = −Q̄a1e−2iλx. (1.8)

A direct consequence of the above system is

∂x
(|a1|2 + |a2|2

) = 0 (1.9)

and consequently this quantity can be calculated inx = 0, i.e.

|A1|2 + |A2|2→ |a1|2 + |a2|2 = |I1|2 + |I2|2.
Now the time evolution ofq becomes

Qt = − 1

π

∫ +∞

−∞
dλ

g + ḡ

|I1|2 + |I2|2a1ā2 e−2iλx (1.10)

which finally reduces to SRS for
g + ḡ

|I1|2 + |I2|2 = πg0 (1.11)

whereg0 is the Raman scattering coupling constant.
The system (1.8) and (1.10) (with the above choice) is actually a version of the well

known SRS system as in [14], where the group velocity dispersion is not neglected [19]. The
parameterλ then has the physical meaning of the spectral extension of the wavepackets of
envelopesa1 (pump) anda2 (Stokes).

Then, the most natural application of the method developed here is the integrable
discretization of the SRS equations, together with a simple algorithm for computing the
nonlinear Fourier transform.

2. Construction of the integrable evolution

The Lax pair

Let us consider the following pair of operators:

ψ(k, n + 1) = U(n)3(k)ψ(k, n)3−1(k) (2.1)

ψt(k, n) = V (k, n)ψ(k, n) (2.2)
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where

U(n) = [1−Q(n + 1)]−1 Q(n) =
(

0 q(n)

r(n) 0

)
3(k) =

(
1/z 0
0 z

)
with z2 = k. The compatibility between these two operators can be written as

Ut(n) = V (k, n + 1) U(n)− U(n)3(k) V (k, n)3−1(k) (2.3)

or equivalently

Qt(n + 1) = U−1(n) V (k, n + 1)−3(k) V (k, n)3−1(k) U−1(n). (2.4)

Particular choice forV

The general evolution (2.4) acquires interest when thek dependence is eliminated, which can
be performed through the choice of the matrixV (k, n, t) in terms ofU(k, n, t). For instance
a polynomial dependence onk would lead to the Ablowitz–Ladik hierarchy. Here we choose

V (k, n) = 1

2π i

∮
C

dζ

ζ − kA(ζ, n)G(ζ )A
−1(ζ, n)

(
1 0
0 k/ζ

)
(2.5)

whereC is the unit circle oriented anticlockwise,G is an arbitrary diagonal matrix

G(ζ) =
(
g1(ζ ) 0

0 g2(ζ )

)
(2.6)

andA(ζ, n) satisfies the spectral equation (2.1), i.e.

A(ζ, n + 1) = U(n)3(ζ )A(ζ, n)3−1(ζ ). (2.7)

The general evolution (2.4) now becomes

Qt(n + 1) = 1

2π i

∮
C

dζ

ζ − kM(k, ζ, n) (2.8)

with

M(k, ζ, n) = U−1(n)A(ζ, n + 1)G(ζ )A−1(ζ, n + 1)

(
1 0
0 k/ζ

)
−3(k)A(ζ, n)G(ζ )A−1(ζ, n)

(
1 0
0 k/ζ

)
3−1(k) U−1(n). (2.9)

Using the identities(
1 0
0 k/ζ

)
3−1(k) = z(k)

z(ζ )
3−1(ζ )

z(k)

z(ζ )
3(k) =

(
1 0
0 k/ζ

)
3(ζ)

together with the spectral equation (2.7), we finally obtain after some algebraic manipulation
that the quantityM(k, ζ, n)/(k − ζ ) is actuallyk independent, and the evolution reads

Qt(n + 1) = − 1

2π i

∮
C

dζ

2ζ

[
σ3,3(ζ )A(ζ, n)G(ζ )3

−1(ζ )A−1(ζ, n + 1)
]
. (2.10)
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Discrete SRS

To recover now from the above evolution the SRS system (1.1), we assume the reduction
r = −q̄. In that case, one can show that the matricesA(ζ, n) andG(ζ) have the following
structures:

A =
(

A1 ζ−nĀ2

ζ nA2 −Ā1

)
G =

(
g 0
0 −ḡ

)
. (2.11)

Equation (2.7) then results in

A1(ζ, n, t)− A1(ζ, n−1, t) = ζ nq(n, t)A2(ζ, n, t)

A2(ζ, n, t)− A2(ζ, n−1, t) = −ζ−nq̄(n, t)A1(ζ, n, t)
(2.12)

which is nothing but the first two equation of (1.1) forζ = eiθ . Next, it is only a matter of
algebraic computation to reduce, with the structure (2.11), the evolution equation (2.10) to the
form in (1.1).

Energy non-conservation

Note that in contrast to what occurs in the continuous case, the quantity

− det{A} = |A1|2 + |A2|2 (2.13)

is not a constant as indeed from (2.12) we deduce

|A1(n + 1)|2 + |A2(n + 1)|2 = |A1(n)|2 + |A2(n)|2
1 + |q(n + 1)|2 (2.14)

which shows that the totalenergy flux densityis not conserved along the line, or that the light
beams leave some energy on each visited site. Aftern steps,

|A1(n + 1)|2 + |A2(n + 1)|2 = (|I1|2 + |I2|2
) n+1∏
i=0

1

1 + |q(i)|2 . (2.15)

Note on the dispersion relation

In the IST method, the principal spectral problem (2.1) is used to define a special solution, say
ϕ(k, n), by selecting particular boundary values inn = 0 (or n → ∞). Then there exists a
matrixC(k, n) satisfying the equation

C(k, n + 1) = 3(k)C(k, n)3−1(k) (2.16)

such that

ϕ(k, n) = ψ(k, n)C(k, n). (2.17)

Consequently the solutionϕ(k, n) satisfies a modified version of the auxiliary spectral
problem (2.2), namely

ϕt (k, n) = V (k, n) ϕ(k, n) + ϕ(k, n)�(k, n) (2.18)

where

�(k, n) = C−1(k, n) Ct (k, n). (2.19)

The compatibility condition is not modified with that operator, as indeed we have

�(k, n + 1) = 3(k)�(k, n)3−1(k) (2.20)

and the matrix�(k, n) is called thedispersion relation.
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3. The spectral problem on the semi-line

Jost solutions

Let us consider the Ablowitz–Ladik spectral problem (2.1)

ϕ(k, n+1)−3ϕ(k, n)3−1 = Q(n+1) ϕ(k, n+1) n 6 0 ⇒ Q(n) = 0 (3.1)

wherek is the spectral parameter which belongs to the domainD = C−{0,∞}. The solution
of (3.1) possesses the property

det{ϕ(k, n)} = det{ϕ(k, n+1)}[1− r(n+1)q(n+1)]. (3.2)

The solution of this spectral problem goes through the construction of some well chosen
solutions (the Jost solutions) out of some particular asymptotic behaviours. These solutions
are denoted byϕ± and are defined by the following discrete integral equations(n > 0):

(
ϕ+

11(k, n)

ϕ+
21(k, n)

)
=
(

1
0

)
+


n∑
i=1

q(i) ϕ+
21(k, i)

n∑
i=1

kn−i r(i) ϕ+
11(k, i)

 (3.3)

(
ϕ+

12(k, n)

ϕ+
22(k, n)

)
=
(

0
1

)
+


−

∞∑
i=n+1

ki−nq(i) ϕ+
22(k, i)

n∑
i=1

r(i) ϕ+
12(k, i)

 (3.4)

(
ϕ−11(k, n)

ϕ−21(k, n)

)
=
(

1
0

)
+


n∑
i=1

q(i) ϕ−21(k, i)

−
∞∑

i=n+1

kn−i r(i) ϕ−11(k, i)

 (3.5)

(
ϕ−12(k, n)

ϕ−22(k, n)

)
=
(

0
1

)
+


n∑
i=1

ki−nq(i) ϕ−22(k, i)

n∑
i=1

r(i) ϕ−12(k, i)

 (3.6)

together with

n < 0 ⇒ ϕ±(n) = 3nϕ±(0)3−n. (3.7)

Analytical properties

The column vectorsϕ+
1(n) is a polynomial of ordern−1 in k andϕ−2 (n) a polynomial of order

n − 1 in 1/k. Henceϕ+
1(n) can be analytically defined inside the unit circle andϕ−2 outside.

We prove in appendix A that the vectorϕ+
2 is meromorphic inside the unit circle with a finite

numberN+ of simple polesk+
n (andϕ−1 outside withN− polesk−n ).

These solutions obey the Riemann–Hilbert relations on the unit circle
ϕ+

1 − ϕ−1 = −ζ nρ−ϕ−2
ϕ+

2 − ϕ−2 = ζ−nρ+ϕ+
1

(3.8)

where thereflection coefficientsare

ρ+ = −
∞∑
i=1

ζ iq(i) ϕ+
22(ζ, i) ρ− = −

∞∑
i=1

ζ−i r(i) ϕ−11(ζ, i). (3.9)
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Boundary behaviours and spectral coefficients

By direct observation we have

n = 0: ϕ+ =
(

1 ρ+

0 1

)
ϕ− =

(
1 0
ρ− 1

)
n→∞: ϕ+→

(
τ̂+ 0
ζ nρ̂+ τ+

)
ϕ− →

(
τ− ζ−nρ̂−

0 τ̂−

)
.

(3.10)

These bounds define also the transmission coefficientsτ± as

τ+ = 1 +
∞∑
i=1

r(i) ϕ+
12(ζ, i) τ− = 1 +

∞∑
i=1

q(i) ϕ−21(ζ, i) (3.11)

and the auxiliary spectral datâρ± and τ̂± which are discussed in appendix B. Using (3.2)
recursively fromn = 0 to∞ we obtain theunitarity relation

1− ρ+ρ− = τ+τ−
∞∏
i=1

[1− r(i) q(i)]. (3.12)

Reduction

If Q(n) satisfies the reductionq(n) = −r̄(n) one can verify directly from the discrete integral
equations definingϕ in (3.3)–(3.6) that

σ2ϕ+(1/k̄, n) σ2 = ϕ−(k, n). (3.13)

Then from the definitions (3.9), (3.11) it follows that for|ζ | = 1

ρ+(ζ ) = −ρ−(ζ ) τ+(ζ ) = τ−(ζ ) (3.14)

and to simplify the formulae from now on we shall be using

ρ(ζ ) ≡ ρ+(ζ ) τ (ζ ) ≡ τ+(ζ ). (3.15)

The unitarity relation (3.12) can be rewritten as

1 + |ρ|2 = |τ |2F (3.16)

where

F =
∞∏
i=1

(
1 + |q(i)|2). (3.17)

4. The solution of discrete SRS

Time evolution of the spectral data

The tool to solve the boundary value problem (1.3) for the discrete SRS system (1.1) is
completed now by calculating the time evolution of the spectral coefficientsρ(ζ, t) andτ(ζ, t).
Indeed, once these evolutions found, the output field values (1.4), are explicitly calculable.
The question of the evaluation of thepotentialq(n, t) goes through the solution of the inverse
problem which will be discussed later.

The evolution of the reflection coefficientρ(ζ, t) is obtained from the auxiliary Lax
operator (2.2), or more precisely from the version (2.18) adapted to the Jost solutionsϕ±,
by just taking its value inn = 0 and its limit value asn → ∞. This calculation, while
technical, presents no particular difficulty and we leave it to appendix C. Let us just remark
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that the procedure gives the value of the dispersion relation�± and the time evolution of all
spectral data (ρ±, τ± ρ̂± andτ̂±), and that it furnishes more equations than necessary. Hence
we shall have to verify consistency, namely that some of the equations are redundant.

The result of the process detailed in appendix C is the following time evolution of the
reflection coefficient:

ρt = V +
12(0) + ρ

[
V +

11(0)− V +
22(0)

]− ρ2V +
21(0) (4.1)

and of the transmission coefficient

τt = V +
22(∞)τ −

[
V +

22(0) + ρV +
21(0)

]
τ (4.2)

whereVij (0) (respectivelyVij (∞)) denotes theij -component of the matrixV (k, n, t) defined
in (2.5) taken inn = 0 (respectively inn→∞).

These evolutions can be written in a more compact form as

ρt = ν12 + ρ(ν11− ν22)− ρ2ν21 (4.3)

where theνij are given from the input data as the components of the matrix (we note eiθ = k)
1

2π i

∮
C

dζ

ζ − (1− 0)k

1

|I1|2 + |I2|2
(
g|I1|2 − ḡ|I2|2 (g + ḡ)I1Ī2k/ζ

(g + ḡ)Ī1I2
(
g|I2|2 − ḡ|I1|2

)
k/ζ

)
(4.4)

whereC is the unit circle. For the transmission coefficient we have the linear evolution (1.6)
for

µ22 = 1

2π i

∮
C

dζ

ζ − (1− 0)k

k

ζ

g|I1ρ̄ + I2|2 − ḡ|I1− ρI2|2(
1 + |ρ|2)(|I1|2 + |I2|2

) . (4.5)

It is worth noting that theboundary valuedataI1 andI2 of (1.3) completely determine the
coefficients of the above evolutions, while theinitial datum ofq(n, 0) determines the initial
valuesρ(k, 0) andτ(k, 0) through the solution of the direct spectral problem (as usual in the
IST method). The interesting aspect of our system is that the physically relevant case is that
of two waves entering a medium initially at rest, that is forq(n, 0) = 0 corresponding to

ρ(k, 0) = 0 τ(k, 0) = 1. (4.6)

We note also that the evolutions (4.1) which furnishes the solution is constituted of an
inhomogeneous termV +

12(0) responsible for growth of the medium excitationq, a linear factor
ensuring Raman amplification and a nonlinear part (inρ2) allowing for pole motion in the
complex plane.

Inverse problem

The IST method allows also to solve for the value of the medium excitationq(n, t) for all n and
any given timet . This is obtained by solving theinverse problem, namely the reconstruction
of the Jost solutions, and of thepotentialq, from the data ofρ(k, t) andτ(k, t). This is done
as follows.

The potentials are obtained by inserting into (2.1) the asymptotic expansions at largek

and at smallk of, respectivelyϕ−2 andϕ+
1 . The result is

q(n + 1) = −ϕ+(1)
12 (n) r(n + 1) = −ϕ−(−1)

21 (n) (4.7)

whereϕ+(1)
12 (n) is the coefficient ofk in the Taylor expansion fork → 0 of ϕ+

12(k, n) and
ϕ
−(−1)
21 (n) the coefficient of 1/k in the Laurent expansion fork→∞ of ϕ−21(k, n).
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Note that from (3.5) and (3.4) we have

lim
k→∞

ϕ−1 (k, n) =
(

1
0

)
(4.8)

lim
k→0

ϕ+
2(k, n) =

(
0
1

)
. (4.9)

Taking into account these asymptotic behaviours and their analytical properties we deduce
that the Jost solutionsϕ−1 andϕ+

2 can be reconstructed by solving the following Cauchy–Green
integral equations:(
ϕ−11(k, n)

ϕ−21(k, n)

)
=
(

1
0

)
− 1

2π i

∮
C

dζ
ζ nρ−(ζ )

ζ − (1 + 0)k

(
ϕ−12(ζ, n)

ϕ−22(ζ, n)

)
−
∑
j

(k−j )
n Res
k−j
{ρ−} 1

k−j − k
(
ϕ−12(k

−
j , n)

ϕ−22(k
−
j , n)

)
(4.10)

(
ϕ+

12(k, n)

ϕ+
22(k, n)

)
=
(

0
1

)
+

1

2π i

∮
C

dζ
ζ−nρ+(ζ )

ζ − (1− 0)k

k

ζ

(
ϕ+

11(ζ, n)

ϕ+
21(ζ, n)

)
−
∑
j

(
k+
j

)−n
Res
k+
j

{ρ+} k
k+
j

1

k+
j − k

(
ϕ+

11(k
+
j , n)

ϕ+
21(k

+
j , n)

)
. (4.11)

By using (C.2) and the Riemann–Hilbert relations we deduce that(
ϕ+

11(k, n)

ϕ+
21(k, n)

)
=
(

1
0

)
− 1

2π i

∮
C

dζ
ζ nρ−(ζ )

ζ − (1− 0)k

(
ϕ−12(ζ, n)

ϕ−22(ζ, n)

)
−
∑
j

(k−j )
n Res
k−j
{ρ−} 1

k−j − k
(
ϕ−12(k

−
j , n)

ϕ−22(k
−
j , n)

)
(4.12)

(
ϕ−12(k, n)

ϕ−22(k, n)

)
=
(

0
1

)
+

1

2π i

∮
C

dζ
ζ−nρ+(ζ )

ζ − (1 + 0)k

k

ζ

(
ϕ+

11(ζ, n)

ϕ+
21(ζ, n)

)
−
∑
j

(
k+
j

)−n
Res
k+
j

{ρ+} k
k+
j

1

k+
j − k

(
ϕ+

11(k
+
j , n)

ϕ+
21(k

+
j , n)

)
. (4.13)

Consistency of the evolution on the semi-line

The consistency of the method results in verifying that the reconstructed eigenfunction does
obey the boundary condition (3.7). This is actually a consequence of the analytical properties
of ρ at allt , which is a consequence of (4.1) where the coefficients are analytic functions inside
the unit disc.

Indeed forρ+(k) meromorphic inside the unit disc with a zero atk = 0 and forρ−(k)
meromorphic outside the unit disc with a zero atk = ∞ we have that

ϕ+
1(k, n) =

(
1
0

)
for n 6 0 (4.14)

ϕ−2 (k, n) =
(

0
1

)
for n 6 0. (4.15)
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Inserting these values into (4.10) and (4.11) we obtain

ϕ+
2(k, n) =

(
k−nρ+(k)

1

)
for n 6 0

ϕ−1 (k, n) =
(

1
knρ−(k)

)
for n 6 0.

Then thanks to (4.7) and recalling thatρ+(k) has a zero atk = 0 andρ−(k) a zero atk = ∞
we get that the reconstructed potentialQ(n) = 0 for n 6 0.

Algebraic solution of the inverse problem

The inverse problem can be solved without using the Cauchy–Green integral equations but
just using directly the Riemann–Hilbert relations (3.8), together with the information that the
column vectorϕ+

1(n) is a polynomial of ordern−1 in k andϕ−2 (n) a polynomial of ordern−1
in 1/k, that the asymptotic behaviours ofϕ+

2(n) andϕ−1 (n) atk = 0 and atk = ∞, respectively,
are given by (4.9) and (4.8) and thatρ+(k) andρ−(k) are meromorphic, respectively, inside
and outside the unit disc with a zero atk = 0 and atk = ∞.

Using this information the spectral data are expressed as

ρ+(k) =
∞∑
i=1

s+(i) ki (4.16)

ρ−(k) =
∞∑
i=1

s−(i) k−i (4.17)

and we seek the solution of the inverse problem under the form

ϕ+
1(k, n) =

n−1∑
i=0

d+(i, n) ki (4.18)

ϕ−2 (k, n) =
n−1∑
i=0

d−(i, n) k−i . (4.19)

Solvingthe inverse problem is then understood as finding the unknowns 2-vectorsd±(i, n) in
terms of the (scalar) datas±(i).

The first and second equation of (3.8) can be extended analytically, respectively, outside
and inside the unit disc. We insert (4.18), (4.19), (4.16) and (4.17) and impose thatki and
k−i terms cancel out. Then we get(m = 0, 1, . . . , n − 1) the following algebraic system of
equations for the unknownsd±(i, n)

n−1∑
j=0

amjd
+(j, n) =

(
0
1

)
s−(n−m)− δm0

(
1
0

)
(4.20)

n−1∑
j=0

bmjd
−(j, n) =

(
1
0

)
s+(n−m)− δm0

(
0
1

)
(4.21)
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where the coefficients are expressed in terms of the data as

amj =
n−j−1∑
i=0

s+(n− j − i)s−(n−m− i) for j 6 m− 1 (4.22)

amm =
n−m−1∑
i=0

s+(n−m− i)s−(n−m− i)− 1 (4.23)

amj =
n−m−1∑
i=0

s+(n− j − i)s−(n−m− i) for j > m + 1 (4.24)

and

bmj =
n−j−1∑
i=0

s−(n− j − i)s+(n−m− i) for j 6 m− 1 (4.25)

bmm =
n−j−1∑
i=0

s−(n− j − i)s+(n−m− i)− 1 (4.26)

bmj =
n−m−1∑
i=0

s−(n− j − i)s+(n−m− i) for j > m + 1. (4.27)

By factorization of the coefficients of 1/k andk in (3.8), we obtain the expressions of
ϕ
−(−1)
1 (n) andϕ+(1)

2 (n) which from (4.7) lead to the potentials

r(n + 1) = −
n−1∑
i=0

d−2 (i, n)s
−(n− i + 1) (4.28)

q(n + 1) = −
n−1∑
i=0

d+
1 (i, n)s

+(n− i + 1) (4.29)

where thed±j ’s denote the two components of the vectord±.
In the case of the reductionr = −q̄ we have

d+
1 (i, n) = d−2 (i, n) (4.30)

d+
2 (i, n) = −d−1 (i, n) (4.31)

s+(i) = −s−(i). (4.32)

In this case the matrices of the coefficients of the two systems of equations in the unknowns
d+(j, n) andd+(j, n) are adjoints with diagonal elements6 0.

5. A significant example

Let us consider the case

I2(k, t) = aeiφt I1(k, t) (5.1)

whereI1(k, t) is an arbitrary function andφ ∈ R anda ∈ C are arbitrary constants. This
choice corresponds to a Stokes envelope inputI2(k, t) which is a portion of the pump input
I1(k, t) and with a polarization direction rotating around that ofI1(k, t) at angular velocityφ.
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From (4.1) and (C.12), in the reduced caseq = −r̄, we obtain the following evolution
equation for the reflection coefficient:

ρt + eiφtαρ2 + (β + iφ)ρ + e−iφtkγ = 0 (5.2)

where

α(k) = 2a(
1 + |a|2) 1

2π i

∮
C

dζ gR(ζ )

(ζ − (1− 0)k)
(5.3)

β(k) = −
(

1− |a|2
1 + |a|2

)
1

2π i

∮
C

dζ gR(ζ )

(ζ − (1− 0)k)
(1 + k/ζ )− iφ − iφ0 (5.4)

γ (k) = − 2ā(
1 + |a|2) 1

2π i

∮
C

dζ gR(ζ )

(ζ − (1− 0)k)ζ
(5.5)

φ0 = − 1

2π i

∮
C

dζ gI (ζ )

ζ
(5.6)

andgR(ζ ) andgI (ζ ) are the real and imaginary part of the coupling function, respectively. It
is easy to show that changinggI (ζ ) is equivalent to change the phaseφ in the equation (5.1)
relating the two initial dataI1 andI2. Therefore, without loss of generality, we can choose
gI (ζ ) ≡ 0 (and thenφ0 = 0), whilegR(ζ ) is left arbitrary.

The Riccati equation (5.2) can be solved explicitly giving

ρ(t) = e−iφt 0ρ0 − (βρ0 + 2kγ ) tanh0t/2

0 + (2αρ0 + β) tanh0t/2
(5.7)

where

ρ0(k) = ρ(k, 0) (5.8)

0(k) =
√
β(k)2 − 4kα(k) γ (k). (5.9)

Sinceρ is invariant for the exchange0→−0, it has no cut related to the square root necessary
to obtain0. Consequently, thanks also to the analytical properties ofα, β andγ , ρ has the
same analytical properties ofρ0 (that is meromorphic inside the unit disc with a zero atk = 0)
with some possible additional poles due to the zeros of the denominator.

For the evolution equation ofF we get from (C.18)

Ft

F
= 1

π i

∮
C

dζ gR
ζ

|ρ|2(1− |a|2) + āρ̄ e−iφt + aρ eiφt(
1 + |a|2)(1 + |ρ|2) . (5.10)

In particular, if the initial valuesq(n, 0) are different from zero only on a finite interval
the spectral initial dataρ0 can be explicitly computed via a finite step of algebraic operation
(see [20]) and, then, once performed the integrals (5.3)–(5.5), one finds from (5.7) the spectral
dataρ(k, t) at timet . Finally, the initial value problem is solved by integrating (5.10) and by
following the algebraic procedure described in section 4.

Appendix A. Analytical properties

The discrete integral equation (3.3) definingϕ+
1 can be rewritten as

ϕ+
11(k, n)(1− r(n)q(n)) = 1 +q(n)

n−1∑
i=1

kn−i r(i) ϕ+
11(k, i) +

n−1∑
i=1

q(i) ϕ+
21(k, i)

ϕ+
21(k, n) = r(n)ϕ+

11(k, n) +
n−1∑
i=1

kn−i r(i) ϕ+
11(k, i)
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which allows to prove by induction thatϕ+
1(n) is a polynomial of ordern−1 ink. Analogously,

using (3.6) one can show thatϕ−1 (n) is a polynomial of ordern− 1 in 1/k.
The integral equation forϕ+

2 , rewritten as(
ϕ+

12(k, n)

ϕ+
22(k, n)

)
=
(

0
τ+(k)

)
−

∞∑
i=n+1

(
ki−n q(i) ϕ+

22(k, i)

r(i) ϕ+
12(k, i)

)
(A.1)

shows that the functionψ+
2 = ϕ+

2/τ
+ satisfies the discrete Volterra-like integral equation(

ψ+
12(k, n)

ψ+
22(k, n)

)
=
(

0
1

)
−

∞∑
i=n+1

(
ki−n q(i) ψ+

22(k, i)

r(i) ψ+
12(k, i)

)
. (A.2)

Henceψ+
2 is analytic inside the unit disc. Then, writingτ+ as

τ+(k) =
[
1−

∞∑
i=1

r(i) ψ+
12(k, i)

]−1

(A.3)

we deduce thatτ+(k) is meromorphic inside the unit disc with poles the zeros of 1−∑∞
i=1 r(i) ψ

+
12(k, i). Consequentlyϕ+

2 is meromorphic inside the unit disc with poles atk = k+
j

that we assume to be simple.
Note that from the first line of (A.1) and the definition ofρ+ in (3.9) we have

ρ+(k) = kn ϕ+
12(k, n)−

n∑
i=1

ki q(i) ϕ+
22(k, i). (A.4)

Thereforeρ+(k), in contrast with the full line case, can be continued analytically inside the
unit disc where it has the same analytical properties asϕ+

2(k). Note also thatρ+(k) has a zero
atk = 0.

From (A.4) and the second line of (3.4) after multiplication byk − k+
j we get in the limit

k→ k+
j (

k+
j

)n
Res
k+
j

ϕ+
12(k, n) = C+

j +
n∑
i=1

(
k+
j

)i
q(i)Res

k+
j

ϕ+
22(k, i)

Res
k+
j

ϕ+
22(k, n) =

n∑
i=1

r(i)Res
k+
j

ϕ+
12(k, n)

with

C+
j = Res

k+
j

ρ+(k). (A.5)

Comparing with (3.3) we have

Res
k+
j

ϕ+
2(k, n) =

(
k+
j

)−n
C+
j ϕ

+
1

(
k+
j , n

)
. (A.6)

Analogously we can show thatϕ−1 is meromorphic outside the unit disc with simple poles at
k = k−j , thatρ−(k) has the same analytical properties, etc.

The analytical properties ofϕ can be summarized by writing
∂ϕ(k, n)

∂k̄
= ϕ(k, n)R(k, n) (A.7)

where

R(k, n) =
(

0 ρ+(k)δ+(k, 1)k−n

−ρ−(k)δ−(k, 1)kn
)

−2π i

(
0

∑N+

j=1C
+
j δ
(
k − k+

j

)
k−n∑N−

j=1C
−
j δ(k − k−j )kn 0

)
. (A.8)
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The distributionsδ±(k, 1) have support on the unit circleC in the complexk-plane and are
defined by the following formula:∫ ∫

dk ∧ dk̄ δ±(k, 1) f (k) =
∮
C

dζ f ((1∓ 0)ζ ). (A.9)

The distributionsδ
(
k − k±j

)
have support on the pointk = k±j and are defined by∫ ∫

dk ∧ dk̄ δ
(
k − k±j

)
f (k) = f (k±j ). (A.10)

In the reduced caseq(n) = −r(n) taking into account the reduction property forρ± in (3.14)
and the definitions (A.5), we have

k+
j =

1

k̄−j

C+
j

k+
j

=
(
C−j
k−j

)
. (A.11)

Appendix B. Auxiliary spectral data

The auxiliary spectral data used in the boundary behaviours (3.10) are defined as

ρ̂+ =
∞∑
i=1

ζ−i r(i) ϕ+
11(ζ, i) ρ̂− =

∞∑
i=1

ζ i q(i) ϕ−22(ζ, i) (B.1)

τ̂+ = 1 +
∞∑
i=1

q(i) ϕ+
21(ζ, i) τ̂− = 1 +

∞∑
i=1

r(i) ϕ−12(ζ, i). (B.2)

By computingρ̂± + ρ∓ and using the R–H relations (3.8) we readily obtain

ρ̂+ = −ρ−τ̂− ρ̂− = −ρ+τ̂+ (B.3)

and similarly fromτ̂± − τ∓ we obtain

τ̂+ = τ−

1− ρ+ρ−
τ̂− = τ+

1− ρ+ρ−
(B.4)

which, in turn, imply

ρ̂+ = − ρ−τ+

1− ρ+ρ−
ρ̂− = − ρ+τ−

1− ρ+ρ−
. (B.5)

Finally, formulae (B.4) and (B.5) in the reduced caser = −q̄, can be rewritten by means
of (3.12) and (3.17) as

τ̂+ = 1

τF
τ̂− = 1

τ̄F
(B.6)

ρ̂+ = ρ̄

τ̄F
ρ̂− = − ρ

τF
. (B.7)

Appendix C. Evolution of the spectral data

For deriving the evolution equation for the spectral data we use the evolution equation forϕ+

in (2.18) that we write successively inn = 0 andn = ∞.
Let us recall first that

lim
n→±∞

1

2π i

∮
C

dζ

ζ − k
(
k

ζ

)n
8(ζ ) = ∓1

2
8(k) |k| = 1 (C.1)∮

C

dζ

ζ − (1∓ 0)k
f (ζ ) = ±iπf (k) + P

∮
C

dζ

ζ − k f (ζ ) |k| = 1. (C.2)
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We rewrite (2.18) as

3−n(k) ϕ+
t (k, n)3

n(k) = 3−n(k) V +(k, n)3n(k)3−n(k) ϕ+(k, n)3n(k)

+3−n(k) ϕ+(k, n)3n(k) ω+(k) (C.3)

where we introduce, for convenience, the matrixω(k) = 3−n(k)�(k)3n(k), and compute
the behaviour asn→∞ of the matrix3−n(k) V +(k, n)3n(k) which, using (C.1) and (C.2),
results in

lim
n→∞

{
3−n(k) V +(k, n)3n(k)

} = ( v+
11(k,∞) 0

v+
21(k,∞) v+

22(k,∞)

)
(C.4)

with

v+
11(k,∞) =

1

2π i

∮
C

dζ

ζ − (1− 0)k

g|I1− I2ρ|2 − ḡ|I1ρ̄ + I2|2(
1 + |ρ|2)(|I1|2 + |I2|2

)
v+

22(k,∞) = −
1

2π i

∮
C

dζ

ζ − (1− 0)k

ḡ|I1− I2ρ|2 − g|I1ρ̄ + I2|2(
1 + |ρ|2)(|I1|2 + |I2|2

) k

ζ

v+
21(k,∞) =

(g + ḡ)τ (I1− I2ρ)(I1ρ̄ + I2)

τ̄
(
1 + |ρ|2)(|I1|2 + |I2|2

) .

Therefore in the limitn → ∞ from the element 12 of (C.3) we findω+
12 = 0, and from

the other matrix elements

τt = v+
22(∞)τ + ω+

22τ (C.5)

τ̂t = v+
11(∞)τ̂ + ω+

11τ̂ (C.6)

ρ̂t = v+
21(∞)τ̂ +

(
v+

22(∞) + ω+
11

)
ρ̂ + ω+

21τ. (C.7)

Evaluating the same evolution equation atn = 0 we have

0= V +
11(0) + ω+

11 + ρω+
21 (C.8)

0= V +
21(0) + ω+

21 (C.9)

0= V +
22(0) + ω+

22 + ρV +
21(0) (C.10)

ρt = V +
12(0) + ρV +

11(0) + ρω+
22 (C.11)

where

V +(k, 0) = 1

2π i

∮
C

dζ

(ζ − (1− 0)k)
(|I1|2 + |I2|2

)
×
(
g|I1|2 − ḡ|I2|2 (g + ḡ)I1Ī2

(g + ḡ)Ī1I2 g|I2|2 − ḡ|I1|2
)(

1 0
0 k/ζ

)
. (C.12)

We therefore obtain for the evolution equation (4.1) ofρ and

ω+ =
( −V +

11(0) + ρV +
21(0) 0

−V +
21(0) −V +

22(0)− ρV +
21(0)

)
. (C.13)

Inserting the value obtained forω into (C.5)–(C.7) we get evolution equation (4.2) together
with the following evolutions of the auxiliary spectral data:

τ̂t = v+
11(∞)τ̂ −

(
V +

11(0)− ρV +
21(0)

)
τ̂ (C.14)

ρ̂t = v+
21(∞)τ̂ +

(
v+

22(∞)− V +
11(0) + ρV +

21(0)
)
ρ̂ − V +

21(0)τ. (C.15)

Then by using (B.6) we have

τ̂t = −τt
τ
τ̂ − Ft

F
τ̂ . (C.16)
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Inserting it into (4.2) we find

Ft

F
= −v+

11(∞)− v+
22(∞) + V +

11(0) + V +
22(0) (C.17)

or otherwise

Ft

F
= 1

2π i

∮
C

dζ

ζ
(g + ḡ)

|ρ|2(|I1|2 − |I2|2) + I1Ī2ρ̄ + Ī1I2ρ(|I1|2 + |I2|2
)(

1 + |ρ|2) . (C.18)

On can verify consistency by checking that (C.15) is consequence of the other evolution
equations.
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